Skip to main content Link Search Menu Expand Document (external link)

Tutorial 1: Basic Functions & Derivatives


Tutorial PDF Formula Sheet

Class Recording

Solving using MATLAB Solving using Python Solving using Mathematica


Q1: Find the limit of \(\lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}+x-30}\).


Solution

\[\require{cancel} \begin{aligned} \lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}+x-30} &= \lim _{x \rightarrow 5} \frac{\cancel{(x-5)}(x+5)}{\cancel{(x-5)}(x+6)} \\ &= \lim _{x \rightarrow 5} \frac{x+5}{x+6} \\ &= \frac{5+5}{5+6} \\ &= \mathbf{\frac{10}{11}} \end{aligned}\]

Q2: Find the limit of \(\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}\).


Solution

\[\begin{aligned} \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} &= \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}\times\frac{\sqrt{x}+3}{\sqrt{x}+3} \\ &= \lim _{x \rightarrow 9} \frac{\cancel{x-9}}{\cancel{(x-9)}(\sqrt{x}+3)} \\ &= \lim _{x \rightarrow 9} \frac{1}{(\sqrt{x}+3)} \\ &= \frac{1}{\sqrt{9}+3} \\ &= \mathbf{\frac{1}{6}} \end{aligned}\]

Q3: Find the limit of \(\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}\).


Solution

\[\begin{aligned} \lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x} &= \lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x} \times \frac{\sqrt{2+x}+\sqrt{2}}{\sqrt{2+x}+\sqrt{2}} \\ &= \lim _{x \rightarrow 0} \frac{(\sqrt{2+x})^2-(\sqrt{2})^2}{x(\sqrt{2+x}+\sqrt{2})} \\ &= \lim _{x \rightarrow 0} \frac{2+x-2}{x(\sqrt{2+x}+\sqrt{2})} \\ &= \lim _{x \rightarrow 0} \frac{\cancel{x}}{\cancel{x}(\sqrt{2+x}+\sqrt{2})} \\ &= \frac{1}{\sqrt{2}+\sqrt{2}} \\ &= \frac{1}{2\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}} \\ &= \mathbf{\frac{\sqrt{2}}{4}} \end{aligned}\]

Q4: Find the limit of \(\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\tan{\theta}}{\sec{\theta}}\).


Solution

\[\begin{aligned} \lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\tan{\theta}}{\sec{\theta}} &= \lim _{\theta \rightarrow \frac{\pi}{2}} \frac{(\frac{\sin{\theta}}{\cancel{\cos{\theta}}})}{(\frac{1}{\cancel{\cos{\theta}}})} \\ &= \lim _{\theta \rightarrow \frac{\pi}{2}} \sin{\theta} \\ &= \sin{\frac{\pi}{2}} \\ &= \mathbf{1} \end{aligned}\]

Q5: Find the limit of \(\lim _{\theta \rightarrow 0} \frac{\cos{\theta}-1}{\sin{\theta}}\).


Solution

\[\begin{aligned} \lim _{\theta \rightarrow 0} \frac{\cos{\theta}-1}{\sin{\theta}} &= \lim _{\theta \rightarrow 0} \frac{\cos{\theta}-1}{\sin{\theta}} \times \frac{\theta}{\theta} \\ &= \lim _{\theta \rightarrow 0} \frac{\cos{\theta}-1}{\theta} \times \frac{\theta}{\sin{\theta}} \\ &= \lim _{\theta \rightarrow 0} \frac{\cos{\theta}-1}{\theta} \times \lim _{\theta \rightarrow 0} \frac{\theta}{\sin{\theta}} \\ &= \lim _{\theta \rightarrow 0} \frac{\cos{\theta}-1}{\theta} \times \frac{1}{\lim _{\theta \rightarrow 0} \frac{\sin{\theta}}{\theta}} \\ &= 0\times1 \\ &= \mathbf{0} \end{aligned}\]

Q6: If \(2x\leq g(x)\leq x^2-x+2\) for all \(x\), evaluate \(\lim_{x \rightarrow 1} g(x)\).


Solution

\[\lim_{x \rightarrow 1} 2x \leq \lim_{x \rightarrow 1} g(x) \leq \lim_{x \rightarrow 1} (x^2-x+2)\]

Therefore,

\[2\leq\lim_{x \rightarrow 1} g(x) \leq 2\]

Hence,

\[\lim_{x \rightarrow 1} g(x) = \mathbf{2}\]

Q7: Solve \(y'\) if \(y=\sqrt{3x^2-2x+3}\).


Solution

Let \(u=3x^2-2x+3\), therefore \(\frac{du}{dx}=6x-2\).

Substitute \(y=\sqrt{u}=u^{\frac{1}{2}}\), therefore \(\frac{dy}{du}=\frac{1}{2}u^{-\frac{1}{2}}\).

Putting back together,

\[\begin{aligned} \frac{dy}{dx} &=\frac{dy}{du}\cdot\frac{du}{dx} \\ &= \frac{1}{2}u^{-\frac{1}{2}} \cdot 6x-2 \\ &= \frac{1}{2}(3x^2-2x+3)^{-\frac{1}{2}} \cdot 6x-2 \\ &= \frac{6x-2}{2\sqrt{3x^2-2x+3}} \\ &= \boldsymbol{\frac{3x-1}{\sqrt{3x^2-2x+3}}} \end{aligned}\]

Q8: Solve \(y'\) if \(y=5\sqrt[3]{x^2+\sqrt{x^3}}\).


Solution

\(y=5\sqrt[3]{x^2+\sqrt{x^3}}\) can be rewrite as \(y=5(x^2+x^{\frac{3}{2}})^{\frac{1}{3}}\).

Let \(u=x^2+x^{\frac{3}{2}}\), therefore \(\frac{du}{dx}=2x+\frac{3}{2}x^{\frac{1}{2}}\).

Substitute \(y=5u^{\frac{1}{3}}\), therefore \(\frac{dy}{du}=\frac{5}{3}u^{-\frac{2}{3}}\).

Putting back together,

\[\begin{aligned} \frac{dy}{dx} &=\frac{dy}{du}\cdot\frac{du}{dx} \\ &= \frac{5}{3}u^{-\frac{2}{3}}\cdot\left(2x+\frac{3}{2}x^{\frac{1}{2}}\right) \\ &= \boldsymbol{\frac{5}{3}\left(x^2+x^{\frac{3}{2}}\right)^{-\frac{2}{3}}\cdot\left(2x+\frac{3}{2}x^{\frac{1}{2}}\right)} \\ \end{aligned}\]

Alternatively, the equation can be written as \(\frac{5\left(2x+\frac{3}{2}\sqrt{x}\right)}{3\left(x^2+\sqrt{x^3}\right)^{\frac{2}{3}}} = \frac{5\left(\frac{2x}{3}+\frac{1}{2}\sqrt{x}\right)}{\left(x^2+\sqrt{x^3}\right)^{\frac{2}{3}}} = \frac{5\left(\frac{2x}{3}+\frac{\sqrt{x^3}}{2x}\right)}{\left(x^2+\sqrt{x^3}\right)^{\frac{2}{3}}}\)


Q9: Solve \(y'\) if \(y=\ln{\cos{x^2}}\).


Solution

Let \(u=\cos{x^2}\), therefore \(\frac{du}{dx}=(-\sin{x^2})(2x)\).

Substitute \(y=\ln{u}\), therefore \(\frac{dy}{du}=\frac{1}{u}\).

Putting back together,

\[\begin{aligned} \frac{dy}{dx} &= \frac{dy}{du}\cdot\frac{du}{dx} \\ &= \frac{1}{u}\cdot(-\sin{x^2})(2x) \\ &= -\frac{2x\sin{x^2}}{\cos{x^2}} \\ &= \boldsymbol{-2x\tan{x^2}} \end{aligned}\]

Q10: Differentiate \(y=\log{(4+\cos{x})}\).


Solution

Note that \(\frac{d}{dx} (\log_{b} (x))=\frac{1}{\ln (b)\cdot x} .\ \Longrightarrow \frac{d}{dx} (\log_{10} (x))=\frac{1}{\ln (10)\cdot x} =\frac{1}{x} \cdot \log e\). (\(\displaystyle \frac{1}{\ln 10} =\log e\))

\[\begin{aligned} \frac{d}{dx}(\log{4+\cos{x}}) &= \frac{1}{4+\cos{x}}\cdot\log{e} \cdot\frac{d}{dx} (4+\cos{x}) \\ &= \frac{1}{4+\cos{x}}\cdot\log{e} \cdot(-\sin{x}) \\ &= \boldsymbol{\frac{-(\log{e})(\sin{x})}{4+\cos{x}}} \end{aligned}\]

Q11: Find \(y'\) for \(10e^{2xy}=e^{15y}+e^{13x}\).


Solution

\[\begin{aligned} 10e^{2xy}&=e^{15y}+e^{13x} \\ 10e^{2xy}(2x\cdot y'+2y)&=e^{15y}(15y')+e^{13x}(13) \\ 10e^{2xy}(2x\cdot y'+2y)&=15y'e^{15y}+13e^{13x} \\ (20xe^{2xy}-15e^{15y})y'&=13e^{13x}-20ye^{2xy} \\ \boldsymbol{y'}&=\boldsymbol{\frac{13e^{13x}-20ye^{2xy}}{20xe^{2xy}-15e^{15y}}} \end{aligned}\]

Q12: Find \(f'(x)\) if \(f(x)=2x(\arctan{5x})^2+6\tan{(\cos{6x})}\).


Solution

  • \[\frac{d}{dx} (\tan^{-1}{5x})^2=2\tan^{-1}{5x}\cdot\frac{1}{1+(5x)^2}\cdot5=\frac{10\tan^{-1}{5x}}{1+25x^2}\]
  • \[\frac{d}{dx} 2x(\tan^{-1}{5x})^2=2x(\frac{10\tan^{-1}{5x}}{1+25x^2})+(\tan^{-1}{5x})^2\cdot2=\frac{20x\tan^{-1}{5x}}{1+25x^2}+2(\tan^{-1}{5x})^2\]
  • \[\frac{d}{dx} 6\tan{(\cos{6x})}=6\sec^2{(\cos{6x})} \frac{d}{dx}\cos{6x}=6\sec^2{(\cos{6x})}\cdot(-\sin{6x})\cdot6=-36(\sec^2{(\cos{6x})})\sin{6x}\]
\[\begin{aligned} \therefore f'(x)=\boldsymbol{\frac{20x\tan^{-1}{5x}}{1+25x^2}+2(\tan^{-1}{5x})^2-36(\sec^2{(\cos{6x})})\sin{6x}} \end{aligned}\]

Q13: Solve \(y'\) if \(y=4x\sinh^{-1}{(\frac{x}{6})}+\tanh^{-1}{(\cos{10x})}\).


Solution

  • \[\frac{d}{dx} 4x\sinh^{-1}{(\frac{x}{6})}=4x\left[\frac{1}{\sqrt{1+(\frac{x}{6})^2}}\cdot\frac{1}{6}\right]+\sinh^{-1}{(\frac{x}{6})}\cdot4=\frac{\frac{2x}{3}}{\sqrt{1+\frac{x^2}{36}}}+4\sinh^{-1}{(\frac{x}{6})}\]
  • \[\frac{d}{dx} \tanh^{-1}{(\cos{10x})}=\frac{1}{1-(\cos{10x})^2}\cdot\frac{d}{dx}\cos{10x}=\frac{1}{1-\cos^2{10x}}\cdot(-10\sin{10x})=\frac{-10\sin{10x}}{\sin^2{10x}}=-10\csc{10x}\]
\[\begin{aligned} \therefore f'(x)=\boldsymbol{\frac{\frac{2x}{3}}{\sqrt{1+\frac{x^2}{36}}}+4\sinh^{-1}{(\frac{x}{6})}-10\csc{10x}} \end{aligned}\]

Q14: Differentiate \(y=\frac{1}{\sin^{-1}{x}}\).


Solution

\[\frac{d}{dx}(\sin^{-1}{x})=\frac{1}{\sqrt{1-x^2}}\] \[\begin{aligned} y&=(\sin^{-1}x)^{-1}\\ y'&=-(\sin^{-1}{x})^{-2}\frac{d}{dx}(\sin^{-1}x) \\ &=\boldsymbol{-\frac{1}{(\sin^{-1}x^2)\sqrt{1-x^2}}} \end{aligned}\]

Q15: Differentiate \(y=(x^3-1)^{100}\).


Solution

\[\begin{aligned} y'&=100(x^3-1)^{99}\frac{d}{dx}(x^3-1) \\ &= 100(x^3-1)^{99}\cdot3x^2 \\ &= \boldsymbol{300x^2(x^3-1)^{99}} \end{aligned}\]

Copyright © 2021 Koay Hong Vin.