Tutorial 1: Basic Functions & Derivatives
Housekeeping: Importing required libraries
Sympy: SymPy is a Python library for symbolic mathematics. We will use this library to solve all the tutorials.
import sympy as sy
from sympy.abc import x # variable x
from sympy.solvers import solve # Solving equations
from sympy import sqrt,tan,sin,cos,sec,pi,root,ln
from sympy import log,exp,atan,asinh,atanh,asin # Import all required math function
from sympy import diff, idiff # Solving differentiation
sy.init_printing(use_latex=True) # Show it in natural display
How to use sympy to solve limit questions?
- Declare the symbol to be used in the function. For example, if you wanted to use the symbol \(x\), just use
xas usual because we have import the variablexearlier. Alternatively, you can declare \(x\) such thatx = sy.symbols('x'). This will make the variablexa representation of \(x\) in the function to be solved. Note thatsyis used because we importsympyassy. - Type the function. For example, if the function is \(\frac{1}{x}\), type it as
1/x. Note, for power, python uses**instead of^. - Solve the limit with
sympylibrary by usingsy.limit(function,symbol,limit).sy.limittakes three parameters, which are the function, the symbols used in the function and the limit. The return of this fuction will be the answer.
How to use sympy to solve derivative questions?
Just diff(function,symbol)!
Some cheat sheet!
To make sure if you input the equation correctly, you can use the display(function) function. For example,
x = sqrt(x)
display(x)
will return:
\(\sqrt{x}\)
The representation of mathematics function in Python:
| Mathematics Function | Python representation |
|---|---|
| \(x^2\) | x**2 |
| \(\sqrt{x}\) | sqrt(x) |
| \(\sqrt[3]{x}\) | root(x,3) |
| \(\tan{x}\) | tan(x) |
| \(\sec{x}\) | sec(x) |
| \(\pi\) | pi |
Note that the sqrt, tan, sec, pi used in this notebook are from sympy library, not from math library.
That’s it! Let’s use this knowledge and solve them.
Q1: Find the limit of \(\lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}+x-30}\).
lim = 5
func = (x**2-25)/(x**2+x-30)
sy.limit(func,x,lim)
\(\frac{10}{11}\)
Q2: Find the limit of \(\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}\).
lim = 9
func = (sqrt(x)-3)/(x-9)
sy.limit(func,x,lim)
\(\frac{1}{6}\)
Q3: Find the limit of \(\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}\).
lim = 0
func = (sqrt(2+x)-sqrt(2))/(x)
sy.limit(func,x,lim)
\(\frac{\sqrt{2}}{4}\)
Q4: Find the limit of \(\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\tan{\theta}}{\sec{\theta}}\).
lim = pi/2
func = tan(x)/sec(x)
sy.limit(func,x,lim)
\(1\)
Q5: Find the limit of \(\lim _{\theta \rightarrow 0} \frac{\cos{\theta}-1}{\sin{\theta}}\).
lim = 0
func = (cos(x)-1)/sin(x)
sy.limit(func,x,lim)
\(0\)
Q6: If \(2x\leq g(x)\leq x^2-x+2\) for all \($x\)$, evaluate \(\lim_{x \rightarrow 1} g(x)\).
lim = 1
solve([sy.limit(2*x,x,lim)<=x,x<=sy.limit(x**2-x+2,x,lim)])
\(x = 2\)
Q7: Solve \(y'\) if \(y=\sqrt{3x^2-2x+3}\).
y = sqrt(3*x**2-2*x+3)
diff(y,x)
\(\frac{3 x - 1}{\sqrt{3 x^{2} - 2 x + 3}}\)
Q8: Solve \(y'\) if \(y=5\sqrt[3]{x^2+\sqrt{x^3}}\).
y = 5*root(x**2+sqrt(x**3),3)
diff(y)
\(\frac{5 \left(\frac{2 x}{3} + \frac{\sqrt{x^{3}}}{2 x}\right)}{\left(x^{2} + \sqrt{x^{3}}\right)^{\frac{2}{3}}}\)
Q9: Solve \(y\) if \(y=\ln{\cos{x^2}}\).
y = ln(cos(x**2))
diff(y)
\(- \frac{2 x \sin{\left(x^{2} \right)}}{\cos{\left(x^{2} \right)}}\)
Q10: Differentiate \(y=\log{(4+\cos{x})}\).
y = log(4+cos(x),10)
diff(y)
\(- \frac{\sin{\left(x \right)}}{\left(\cos{\left(x \right)} + 4\right) \log{\left(10 \right)}}\)
Q11: Find \(y'\) for \(10e^{2xy}=e^{15y}+e^{13x}\).
y=sy.symbols('y')
eqn=10*exp(2*x*y)-exp(15*y)-exp(13*x)
idiff(eqn,y,x)
\(\frac{- 20 y e^{2 x y} + 13 e^{13 x}}{5 \left(4 x e^{2 x y} - 3 e^{15 y}\right)}\)
Q12: Find \(f'(x)\) if \(f(x)=2x(\arctan{5x})^2+6\tan{(\cos{6x})}\).
y = 2*x*(atan(5*x))**2+6*tan(cos(6*x))
diff(y)
\(\frac{20 x \operatorname{atan}{\left(5 x \right)}}{25 x^{2} + 1} - 36 \left(\tan^{2}{\left(\cos{\left(6 x \right)} \right)} + 1\right) \sin{\left(6 x \right)} + 2 \operatorname{atan}^{2}{\left(5 x \right)}\)
Q13: Solve \(y'\) if \(y=4x\sinh^{-1}{(\frac{x}{6})}+\tanh^{-1}{(\cos{10x})}\).
y = 4*x*asinh(x/6)+atanh(cos(10*x))
diff(y)
\(\frac{2 x}{3 \sqrt{\frac{x^{2}}{36} + 1}} + 4 \operatorname{asinh}{\left(\frac{x}{6} \right)} - \frac{10 \sin{\left(10 x \right)}}{1 - \cos^{2}{\left(10 x \right)}}\)
Q14: Differentiate \(y=\frac{1}{\sin^{-1}{x}}\).
y = 1/(asin(x))
diff(y)
\(- \frac{1}{\sqrt{1 - x^{2}} \operatorname{asin}^{2}{\left(x \right)}}\)
Q15: Differentiate \(y=(x^3-1)^{100}\).
y = (x**3-1)**100
diff(y)
\(300 x^{2} \left(x^{3} - 1\right)^{99}\)