
Limit and Derrivatives

Limit Laws
Suppose that  is a constant and the limits  
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c f xlim
x a→

( )

g xlim
x a→

( )

 
Then,

1. f x +g x = f x + g xlim
x a→

[ ( ) ( )] lim
x a→

( ) lim
x a→

( )

2. f x -g x = f x - g xlim
x a→

[ ( ) ( )] lim
x a→

( ) lim
x a→

( )

3. cf x = c f xlim
x a→

[ ( )] lim
x a→

( )

4. f x g x = f x ⋅ g xlim
x a→

[ ( ) ( )] lim
x a→

( ) lim
x a→

( )

5.  if =lim
x a→

f x

g x

( )

( )

f x

g x

limx a→ ( )

limx a→ ( )
g x ≠ 0lim

x a→

( )

= 1lim
𝜃 0→

𝜃

𝜃sin
= 1lim

𝜃 0→

𝜃

𝜃

sin

Derivatives Rules
Rules Function Derivative

Multiplication by constant cf cf'

Power Rule xn nxn-1

Sum Rule f + g f' + g'

Difference Rule f-g f' -g'

Product Rule fg fg' + f'g

Quotient Rule f

g
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g2

Reciprocal Rule 1

f
-
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Increasing/Decreasing Test
If  on an interval, then  is increasing on that interval.•  f' x > 0( ) f

If  on an interval, then  is decreasing on that interval.•  f' x < 0( ) f

 

Derivatives
Function Function Derivative

Constant c 0

Line x 1

ax a

Square x2 2x
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Logarithms
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Trigonometry 
(  in radians)x
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xtan( ) xsec2( )
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Derivatives of Inverse Trigonometric Function
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Derivatives of Inverse Hyperbolic Function
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Derivatives of Inverse Hyperbolic Function
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Concavity Test
If  for all  in , then the graph of  is concave upward on . • f'' x > 0( ) x I f I

If  for all  in , then the graph of  is concave downward on . • f'' x < 0( ) x I f I

The First Derivative Test
Suppose that  is a critical number of a continuous function .c f

If  changes from positive to negative at , then  has a local maximum at .• f' c f c

If  changes from negative to positive at , then  has a local minimum at .• f' c f c

If  does not change sign at , then  has no local maximum or minimum at .• f' c f c

The Second Derivative Test      Suppose  is continuous near .f'' c

If  and , then  has a local minimum at .• f' c = 0( ) f'' c > 0( ) f c

If  and , then  has a local maximum at .• f' c = 0( ) f'' c < 0( ) f c


