Limit and Derrivatives

Suppose that <i>c</i> is a constant and the limits $\lim_{x \to a} f(x)$				
and $\lim_{x \to a} g(x)$ exist.				
Then,				
1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ 2. $\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$ 3. $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$ 4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ 5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$				
$\lim_{\theta \to 0} \frac{\theta}{\sin \theta} = 1$ $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$				

Derivatives Rules			
Rules	Function	Derivative	
Multiplication by constant	cf	cf'	
Power Rule	x^n	nx^{n-1}	
Sum Rule	f + g	f' + g'	
Difference Rule	f-g	f'-g'	
Product Rule	fg	fg' + f'g	
Quotient Rule	$\frac{f}{g}$	$\frac{f'g - g'f}{g^2}$	
Reciprocal Rule	$\frac{1}{f}$	$-\frac{f'}{f^2}$	

Increasing/Decreasing Test

- If f'(x) > 0 on an interval, then f is increasing on that interval.
- If f'(x) < 0 on an interval, then *f* is decreasing on that interval.

Derivatives				
Function	Function	Derivative		
Constant	С	0		
Line	x	1		
	ax	а		
Square	<i>x</i> ²	2 <i>x</i>		
Square Root	\sqrt{x}	$\left(\frac{1}{2}\right)x^{-\frac{1}{2}}$		
Exponential	e ^x	e^x		
	a ^x	$\ln(a) a^x$		
Logarithms	$\ln(x)$	$\frac{1}{x}$		
	$\log_a(x)$	$\frac{1}{x\ln(a)}$		
Trigonometry	sin(x)	$\cos(x)$		
(x in radians)	$\cos(x)$	$-\sin(x)$		
	tan(x)	$\sec^2(x)$		
Inverse Trigonometry	$\sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$		
	$\cos^{-1}(x)$	$-\frac{1}{\sqrt{1-x^2}}$		
	$\tan^{-1}(x)$	$\frac{1}{1+x^2}$		

Derivatives of Inverse Trigonomet	ric Function
$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$
$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$
$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$	$\frac{d}{dx}\left(\cot^{-1}x\right) = -\frac{1}{1+x^2}$

Derivatives of Inverse Hyperbolic Function

$$\frac{d}{dx}(\sinh x) = \cosh x \qquad \qquad \frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \coth x$$

$$\frac{d}{dx}(\cosh x) = \sinh x \qquad \qquad \frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x \qquad \qquad \frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x$$

Derivatives of Inverse Hyperbolic Function

$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{1+x^2}}$	$\frac{d}{dx}(\operatorname{csch}^{-1}x) = -\frac{1}{ x \sqrt{x^2+1}}$
$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$	$\frac{d}{dx}(\operatorname{sech}^{-1}x) = -\frac{1}{x\sqrt{1-x^2}}$
$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$	$\frac{d}{dx}(\coth^{-1}x) = \frac{1}{1-x^2}$

Concavity Test

- If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

The First Derivative Test

Suppose that c is a critical number of a continuous function f.

- If f' changes from positive to negative at c, then f has a local maximum at c.
- If f' changes from negative to positive at c, then f has a local minimum at c.
- If f' does not change sign at c, then f has no local maximum or minimum at c.

The Second Derivative Test Suppose f'' is continuous near c. • If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.

• If f'(z) = 0 and f''(z) < 0, then f has a local minimum at z

• If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

Prepared by hongvin. **kix1001.hongvin.xyz.**