KIX 1001: ENGINEERING MATHEMATICS 1

Tutorial 6: Matrix Algebra

1. Let
$$A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$$
, $X = \begin{bmatrix} -x \\ 0 \\ x \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$

(a) Find the value of x such that $X^TAX=144$

(b) Show that
$$B^T A B = 27 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

2. Let

$$A = \begin{bmatrix} 6 & -1 & 1 \\ 0 & 13 & -16 \\ 0 & 8 & -11 \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} 10.5 \\ 21.0 \\ 10.5 \end{bmatrix}$$

- (a) Determine a scalar r such that Ax=rx
- (b) Is it true $A^Tx=rx$ for the value of r determined in part (a)
- 3. Solve each of the following systems of linear equations using Gaussian Elimination technique

$$x+2y+3z=9$$

(a)
$$2x - y + z = 8$$

$$3x-z = 3$$

$$-3x+2y-6z=6$$

(b)
$$5x + 7y - 5z = 6$$

$$x+4y-2z=8$$

$$2x + y + 3z = 1$$

(c)
$$2x+6y+8z=3$$

$$6x + 8y + 18z = 5$$

$$2x - 3y + z = -5$$

(d)
$$3x+2y-z=7$$

 $x+4y-5z=3$

$$x + y + z = 6$$

(e)
$$2x - y + z = 3$$

$$3x-z=0$$

4. Find the eigenvalues and their associated eigenvectors

(a)
$$A = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix}$$

(b) $A = \begin{bmatrix} -5 & 0 & 0 \\ 3 & 7 & 0 \\ 4 & -2 & 3 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} -5 & 0 & 0 \\ 3 & 7 & 0 \\ 4 & -2 & 3 \end{bmatrix}$$

5. Using Cayley Hamilton approach, find A-1 for the following matrix:

(a)
$$\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

6. Diagonalize the following matrix, if possible

(a)
$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$